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6. DISCUSSION 

The self-consistent values we find in two iterations 
are mJ^21.S mj and YCOPTT^—2.15/w/. The experi­
mental value of mj is 31.4 mj^. One can estimate the 
coupHng constant jccpJ from the decay^^ of co into Sir 
and the experimental value Fco—9.5 MeV.̂ ^ This gives 

11 M. Gell-mann, D. Sharp, and W. G. Wagner, Phys. Rev. 
Letters 8, 261 (1962). 

12 N. Gelfand, D. Miller, M. Nussbaum, J. Ratan, J. Schultz, 
et o/., Phys. Rev. Letters 11, 436 (1963); R. Armenteros, D. N. 
Edwards, T. Jacobsen, A. Shapira, J. Vandermeulen et al.j Pro­
ceedings of the Sienna International Conference on elementary 
particles, 1963 (to be published). 

7wpT^~15.4/wx .̂ The agreement is fair enough in high-
energy physics. 

The curious thing one observes about the computed 
D function is that it has a second zero at about 5—32.8 
w / with a positive slope. It may simply be due to the 
inadequate treatment of the x cut while applying 
unitarity. 
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Partial-wave dispersion relations, extended to noninteger angular momenta are utilized, together with 
assumptions on the dominance of one-meson exchange to compute the properties of bound states. The ex­
changed mesons are represented by Regge poles, which lead to a set of equations of generahzed Fredholm type 
when the N/D technique is applied. Bound-state energies in a one-channel system of two spinless particles 
are computed, as well as the slope of the Regge trajectory which passes through each bound state; the latter 
is accomplished by an extension of the N/D formalism to angular momenta in the neighborhood of the 
positive integers. Threshold questions are treated by an approximation for more complex diagrams. The 
integral equations are solved without further approximations by electronic computer methods. The model 
is applied to the (p meson as a nearly bound state of the KK system in the present work and yields informa­
tion on ^-wave KK interactions. Application to future "bootstrap" calculations, the reason for computing 
the Regge slopes, is discussed, as well as the relationship to the strip approximation. 

I. INTRODUCTION 

IN this paper we study a simple model strong inter­
action calculation based on the idea that single-

vector meson exchange mechanisms are the dominant 
dynamical singularities in the analytically continued 5 
matrix. A one-channel elastic scattering amplitude for 
two nonidentical pseudoscalar particles, satisfying a 
Mandelstam representation, is chosen for definiteness ; 
it is only a matter of detail based on previous analyses 
to generalize to particles with spin,̂  multichannel re­
actions,^ and reactions which lead in this model to com-

*This work partially supported by the National Science 
Foundation. 

^ For the spin-J-spin-J problem see for example M. L. Gold-
berger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys. 
Rev. 120, 2250 (1960); B. R. Desai and R. G. Newton, ibid. 129, 
1437 (1963). For spin-J-spin-0 scattering, cf. S. C. Frautschi and 
J. D. Walecka, Phys. Rev. 120, 1486 (1960); V. Singh, ibid, 129, 
1889 (1963). 

2 J. Bjorken, Phys. Rev. Letters 4, 473 (1960); J. Bjorken and 
M. Nauenberg, Phys. Rev. 121, 1250 (1961); R. Blankenbecler, 
ibid. 122, 983 (1961); J. M. Charap and E. T. Squires, Ann. Phys. 
(N. Y.) 21, 8 (1963). 

plex singularities.^ We specialize further to discuss the 
physical problem of the KK amplitude, assuming p-
meson exchange is the dominant interaction. This has 
physical interest due to the discovery of the (p meson. ̂  
The hypothesis that the (̂  is a simple elastic P-wave 
resonance in the KK system is examined; and theo­
retical reasons are put forth, based on the model calcu­
lation, that an isoscalar, scalar meson (o-) should exist. 
It appears in our model as an 5-wave bound state of K 

The main applications of this model, however, are 
expected to be in "bootstrap'' calculations in which the 

3L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); J. S. 
Ball, W. R. Frazer, and M. Nauenberg, ibid. 128,478 (1962); J. M. 
Cornwall, K. T. Mahanthappa, and V. Singh, ibid. 131, 1882 
(1963). 

^N. Gelfand, D. Miller, M. Nussbaum, J. Ratau, J. Schultz, 
J. Steinberger, and T. Tau, Phys. Rev. Letters 11, 438 (1963); 
P. Schlein, W. Slater, L. Smith, D. H. Stork, and H. Ticho, Phys. 
Rev. Letters 10, 368 (1963); P. L. Connolly, E. L. Hart, K. W. 
Lai, G. London, G. C. Monati et al., Phys. Rev. Letters 10, 371 
(1963); L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, 
I. S. Mittra et ah, Phys. Rev. Letters 9, 180 (1962). 
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exchanged vector meson is itself produced as a / = 1 
bound state, thus forming a self-consistent system. (It 
should be emphasized that the calculation as presented 
in this paper is not a bootstrap calculation since we do 
not assume the p is a bound state of K and K.) Such 
physical models have been investigated by many 
authors^'^ since Chew and Mandelstam^ originally pro­
posed such a situation for the TT-TT amplitude. Most of 
these investigations, however, have been hampered by a 
lack of a good prescription for analytical continuation. 
Specifically, one needs to continue the amplitude repre­
senting the meson as a pole in the energy variable, 
where it appears as the result of a partial-wave calcula­
tion, into the unphysical region corresponding to the 
exchange of the meson, where it appears as a dynamical 
singularity in the crossed channel. One cannot use the 
partial-wave decomposition directly, since the Legendre 
series diverges when the physical roles of energy and 
momentum transfer are interchanged. This problem 
was clarified by the use of the Sommerfeld-Watson 
transform, in potential theory,^ leading to the recogni­
tion that resonances and bound states may be fruitfully 
represented by poles in the complex angular momentum 
plane.^ 

This representation, and its relation to the double-
dispersion (Mandelstam) representation, were discussed 
by Chew, Frautschi, and Mandelstam,^^ and some of the 
consequences for bootstrap calculations were exploited 
first by Wong.^ The latter utilized the structure of the 
Regge pole term associated with the p meson to carry 
out a calculation of the irirp bootstrap, with the slope 
(a!) of the Regge trajectory associated with the p intro­
duced as an input parameter. This parameter was 
varied, and the character of the bootstrap solutions was 
found to limit the possible values which one could 
assume for a. In this sense, a' replaced the older cutoff 
parameters or subtraction prescriptions which had been 
introduced previously in an ad hoc fashion^^ to get 
solutions to the partial-wave dispersion relations when 
vector-meson exchanges were considered. Such semi-
phenomenological Regge behavior has been used in 
describing nucleon-nucleon scattering with vector meson 
exchange, with considerable success.^^ 

5 Some examples are F. Zachariasen, Phys. Rev. Letters 7, 112 
(1961) and 7, 268 (1961); D. Y. Wong, Phys. Rev. 126, 1220 
(1962); R. H. Capps, Phys. Rev. 131, 1307 (1963); R. E. 
Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963); F. Zachariasen and 
C. Zemach, Phys. Rev. 128, 849 (1963). 

61. M. Barbour and K. Nishimura, Nuovo Cimento 29, 288 
(1963). 

7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); 
Nuovo Cimento 19, 752 (1961). 

8T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960); 
A. Bottino, A. M. Longani, and T. Regge, ihid. 23, 954 (1962). 

9 R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 
(1962). 

^^ G. F. Chew, S. C. :^rautschi, and S. Mandelstam, Phys. Rev. 
126, 1202 (1962). 

11 See, for example, F. Zachariasen, Ref. 5; R. C. Arnold and 
J. J. Sakurai, Phys. Rev. 128, 2808 (1962). 

12 A. Scotti and D. Y. Wong, Phys. Rev, Letters 10, 142 (1963). 

If one is to carry out a calculation in the bootstrap 
philosophy, however, one is faced with the difficulty 
that the Regge slope a' associated with the vector meson 
(or resonant state) should be deduced from the results 
of the calculation, in order that a self-consistent model 
is achieved. Only if this is done can we hope to eliminate 
arbitrary parameters and see the true consequences of 
bootstrap-model assumptions. 

There has been proposed one method^^ for explicitly 
calculating the trajectory functions a{S) which may be 
applicable to the self-consistent 5-matrix approach, but 
at the present state difficulties have been encountered 
with applying the method outside of potential theory. 
Furthermore, the integral equations involved are quite 
nonlinear and are not immediately susceptible to clas­
sical methods of analysis, which makes it difficult to 
examine the existence and uniqueness of solutions for 
the equations, even in approximate form. 

In the present work we seek to avoid unnecessary 
complications by using partial-wave dispersion relations 
to compute one additional parameter a\ which is 
sufficient for completing a bootstrap calculation. Here 
a' is defined to be the slope of the Regge trajectory 
which passes through the bound state or resonance of 
angular momentum /, evaluated at the point where 
a (S) = L If we assume that this slope is small and that 
we can extrapolate to 5 = 0 with reasonable accuracy, 
then the asymptotic behavior of the partial-wave ampli­
tudes in the crossed channels is determined as a function 
of a'. This asymptotic behavior yields a convergent set 
of (generaHzed) partial-wave dispersion relation source 
terms, and an iterative procedure is made possible with 
no ad hoc convergence parameters necessary. 

The computation is carried out explicitly for the case 
of p exchange in the r = 0 state of KK elastic scattering, 
as mentioned above. No attempt at a bootstrap is made. 
I t is apparent that in reality besides p exchange, we will 
have CO and ip vector meson exchanges as well as 
(possibly) scalar meson exchanges. The calculation done 
here assumes that for the r = 0 state, the other two 
vector mesons have a contribution which can be lumped 
with the p term. The coupHng constant fpKK^ which we 
investigate should thus be understood as representing an 
effective sum over p, OJ, and ip exchange terms. Explicit 
inclusion of the separate terms is a trivial matter, 
formally, and is not done here because we want to 
simplify the presentation. 

There is some additional physical inconsistency in the 
model calculation done here. We have ignored the p-
wave amplitude poles in the direct {S) channel corre­
sponding to oj (in the T=Q state) and p (in the r = 1 
state). The point of the present calculation is to exhibit 
the bound-state properties as they depend on the ex­
change of a vector meson, corresponding to the studies 

13 H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963); 
S. C. Frautschi, P. E. Kaus, and F. Zachariasen, Phys. Rev, 133, 
B1607 (1964). 
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which have been carried out in potential scattering. The 
inclusion of the poles mentioned above could affect the 
numerical results of the actual KK system scattering 
amplitude substantially, but we do not wish to empha­
size the connection with experiment. In a bootstrap 
calculation, which is the design purpose of the method, 
such direct poles would not exist separately from the 
bound states obtained from the calculation; e.g., if we 
assumed only (p meson exchange in the present model 
we would be in the bootstrap spirit, and the question of 
p and CO poles would not exist. 

I t is believed by the author that the worst feature of 
the model in the KK problem is the restriction to a one-
channel calculation. I t would clearly be of interest to 
enlarge the dimensionality of_the amplitude to include TT 
and 7) mesons as well as KK] but physically reaHstic 
results may only come about when the NN channels are 
included. This applies in particular to the ip meson, 
since it is believed to have some intimate dynamical 
connection with the co; the latter has been thought a 
good candidate for a bound state of nucleon and 
antinucleon through a bootstrap process. This will be 
discussed further in Sec. VI. 

11. FORMULATION OF BASIC EQUATIONS; 
S-WAVE STATES 

Assuming that we represent the p meson as a / = 1 
Regge pole in the channel for KK scattering, we have^^ 
for this pole contribution to the scattering amplitude the 
expression 

T,{t,S)=^{2a+\) 

X- •P^^t£~l-2S/(t-4:MK'n. (2.1) 
sin7ra(^) 

Here t'^iMK^y S is the negative of the momentum 
transfer squared, Sinda(f)^ap(t) dind ^{t)^ 13p{t) are the 
Regge trajectory and residue functions associated with 
the p meson. We know that a{Mp^) = l, and 13(Mp^) is 
proportional to the square of the KKp coupling con­
stant. To reduce the number of input parameters, we 
seek to approximate this pole term by evaluating func­
tions wherever possible at the pole position, t=Mp^. The 
extent to which this is justified has not been rigorously 
estabHshed; we must be guided by a correspondence 
with the expression for an elementary vector meson^^ 
from perturbation theory. The expression deduced from 
simplification of the above term must be only a slight 
modification of the elementary case when a is close to 
unity for all t. This leads to replacement of t in the 
argument of the Legendre function by Mp^, and simi­
larly replacement of I3{t)/simra{t) by a simple pole in /, 
e.g., ~ fp^/{Mp^~t). The arguments of Wong^ may be 
appHed to this point. [The value of fp^ may also be 

determined by correspondence in terms of {MP^~^MK^) 
and fpKK^y but that is not required at this point.] The 
replacement of (2a-f 1) by 3 is optional, since we are 
going to assume that ap departs only slightly from unity 
wherever the contribution from Tp is large. 

Finally, we write the resulting term down and relabel 
itas5p(/^,5); 

B,{t,S)-
_ 3 / ; 

P « ( o C - l - 2 5 / ( i r p 2 - 4 M K ^ ) ] . (2.2) 

Now using crossing relations, we consider this as the 
pole approximation for KK scattering in S channel, by 
considering / ̂  0 and S ^ 4 M K I We see that for 5 ^ 4Mjc^, 
there is no branch point of this function, which means 
we can take this as it stands as the source of the left-
hand cut in the partial-wave amplitudes of the S 
channel. We thus do not encounter the problems dis­
cussed (e.g., by Chew^^) in subtracting out a part of the 
Regge-pole associated spectral function to achieve the 
appropriate analyticity properties. 

The Regge-type representation of Khuri^^ might be a 
better starting point than (2.1) for development of our 
model, but the form (2.1) was chosen to simpHfy 
numerical computations. I t is believed that no ap­
preciable difference would result in the calculation we 
have carried out if (2.1) had been replaced by the 
corresponding Khuri pole. I t might be prudent to do 
this in other situations, however, and Chew has pro­
posed such a starting point in the new version of the 
strip approximation.^^ We shall need the representation 
of Bp in the angular momentum variable X for the S 
channel; we must choose the continuation of the scat­
tering ampHtudes Ti{S) to complex angular momenta X 
in accordance with the prescription of Froissart^^ if we 
are to utilize the result for noninteger values of X. I t has 
been shown^^ that an equivalent representation of the 
scattering amplitude for complex X is given by 

2 7_i 

sinxX 
dZQ^{~Z)T(t,S), (2.3) 

where T{t,S) is the scattering amplitude expressed in 
the variables S=W^ and t=-2P(l-Z), 

Thus, in terms of the angular momentum variable X, 
the one-Regge-pole contribution to the 5-channel KK 

14 M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 
(1961). 

15 G. F. Chew, Phys. Rev. 129, 2363 (1963). 
16 N. N. Khuri, Phys. Rev. 130, 429 (1963). 
17 M. Froissart, Phys. Rev. 123, 1953 (1961). 
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scattering amplitude is given by 

r x ^ ^ ) ( 5 ) - 3 / p 2 
1 r+i 

2 7.1 
dZF^iZ) 

X-
P « ( O ( 2 5 / ( 4 M K 2 - M / ) - 1 ) 

Mp2-

sinTrX 

^zex(-z) 

X-
P „ ( o ( 2 5 / ( 4 i f K = - l f / ) - l ) 

M p 2 - ^ 
(2.4) 

-Z), P where in each integral a=ap(t), t=~-2k'^(l-

We now utihze the N/D method'' to write the integral 
equations which determine the amplitude T\(S) in such 
a manner as to insure exact (elastic) unitarity for 
S^4MK^, and to coincide with the Regge-pole ap­
proximation in the left-hand S plane (on the unphysical 
or dynamical cuts); and in the high-energy region 
(S~^^)we desire Tx(S)--> Tx^'K^). The latter follows 
automatically if we exchange a vector meson such as p, 
and normalize the D function to unity for large \S\ 
values, as will be shown later. 

The N/D decomposition for integer X=/ depends on 
the nonoverlapping of cuts along the real S axis in the 
partial-wave amplitudes Ti(S). We know, however, that 
for general X, the amplitudes T\(S) have a kinematic 
branch cut^^ from 5 = — oo to S=4cM^ which joins up 
with the unitarity branch cut from 5=41f^ to S= + ^. 
Thus, before applying the formalism, we must define a 
new function T\(S) in such a way that T\(S) has no cut 
in some interval. This can be accomplished^^-^^ by 
writing 

n(s)=(s-mKyn(s). (2.5) 
Then it can be shown that T\(S) has only the cuts of the 
usual partial-wave amplitudes Ti{S); and we can write 

Tx(S)==Nx{S)/Dx(S), (2.6) 

where N\(S) is analytic in a neighborhood of the real S 
axis from 4:MK^ to oo, while D\(S) has as its only 
singularity a branch cut along the interval S—4:MK^ to 
5 = - f e e . Following the derivation as in the integer X 
case,^ we can derive integral equations for N\ and D\. 
Let us define 

Bx(S) = (S-4MKT^TX^'^ (S) . (2.7) 

Then the discontinuity of T\(S) will coincide with the 
discontinuity of Bx(S) along the dynamical left-hand 
cuts, and utilizing the unitarity relation for Tx in 

18 K. Bardacki, Phys. Rev. 127, 1832 (1962); 130, 369 (1963). 
[Note that the present work has very little relation to the pro­
cedure suggested in the latter paper.] 

19 3. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963). 

the form 

(2iy^\:Tx(S+ie)~fx(S~~ien 
= (S~4MK'yTx{S+ie)Tx{S-ie)p(S), 

we can derive the following integral equation^^ for Nx (S); 

1 /"" 
Nx(S) = 5 x ( 5 ) + - / dS'piS') (y -41^x2)^ 

T J iMK' 

X 
-Bx(S)-Bx(S'y 

S-S' 
N^iS'). (2.8) 

Here p(S) = liS~4MK')/Sj'\ The denominator func­
tion is then given by 

Z?x(5) = l-
pisois'-mKYNxis') 

dS' ; . (2.9) 
^MK' S —S 

According to the results of Mandelstam,^^ these equa­
tions hold at least for all complex X such that | ReX | is 
sufficiently small. 

Now the Regge poles will be given by the zeros of 
Dx{S) when S<4:MK^, and approximately by the zeros 
of ReZ)x(5) for S>4:MK^, at least if the trajectory 
passes by the integers with small imaginary part. Since 
we will be concerned with bound states_(5<41f^2) or 
very low-energy resonances in the KK problem, we 
simply assume that every zero of ReZ>x(5) represents a 
Regge pole. With this in mind, we can identify the 
physical S and P wave bound states and resonances by 
solving the integral equation (2.8) for X = /, / = 0 , 1 ; then 
locating S values SB such that ReZ)z(5B)==0. We can 
identify these points as intersections of Regge tra­
jectories with the integers 0 and 1. In the neighborhood 
of such intersections, we can write the constraint 
satisfied by the trajectory aniS) for small changes in 
5 as 

(Attij)-
dDx{SB) 

d\ 

dDiiS) 
+ ( A 5 ) — = 0. (2.10) 

S==SB 

This means we can compute the slope daB(S)/dS, 
evaluated at the position of a physical bound state, as 

aB'(SB) = ~ {dDi{S)/dS)sB/(dDx(SB)/dX)i, (2.11) 

where / is the angular momentum of the bound state. 
The numerator of this expression is trivially computed 
from the solution of Eq. (2.8) for integer X, as in previ­
ous calculations. The denominator in expression (2.11), 
however, requires the solution of an equation slightly 
more complicated than in the integer case, although 
somewhat simpler than the Eq. (2.8) for arbitrary X. 
Starting from the expression (2.9), we take the deriva-

20 J. L. Uretsky, Phys. Rev. 123, 1459 (1961). 
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tive with respect to X and evaluate at X=/ ; 

dDxiS)\ 1 , 

flX I X = ; X J iMK 

X 

Now let 

l\n{S'- mK')Ni{s')-
dN^{S')\ 

!J- (2.12) 

Ei{S)-^ 
dNy.{S) 

, a n d Fi(S)=—•—•— 

Now we have the method for computing as^ (SB) ', first 
we solve (2.8) for integer X. This involves the Born temi 
Bi(S)j which is the usual partial-wave projection ap­
plied to the form (2.4). Then, using this solution Ni{S) 
and computing Gi(S) from (2.14) and (2.15), we solve 
(2.13), which can be written as 

EiiS)=^GiiS)+- [ dS'p{S') 

\^l X 
-BiiS)-Bi(S')-

S-S' 
(S'-4:MK'')'EI{S). (2.16) 

From Eq. (2.18), taking the derivative with respect to X 
yields 

Ei(s)=Fi(s)+- [ ds'p{s'){s'-mKV 
TT J 4.MK'^ 

Bi(S)-Bi(S') 

S-S' 
xUniS'-iMK') 

F lis)-F lis')-] 1 /•» 
^ p - \NiiS')+- / dS'piSr 

S~S' 

X ( y - 4 M K'y[-
Bi(S)~Bi(sy 

\EI(S'), (2.13) 

Given Fi{S)y Bi{S), and Ni{S) as the solution of Eq. 
(2.18), this becomes an integral equation for the de­
termination of Ei{S). Note that this equation has ex­
actly the same kernel as Eq. (2.8), but a different 
inhomogeneous term, 

1 r^ 
GiiS)^FiiS)+- / dS'pis')is'-iMK')' 

X ln(5 ' -4MK^)-
BiiS)-BiiS') 

S-S' 

FiiS)-FiiS') 

S-S 

From (2.7) and (2.4) we obtain 

FiiS) = -\niS-iMK')BiiS) 

^ ] Ni(S'), (2.14) 

This can be done utilizing the resolvent kernel as found 
for (2.8). Finally, we use (2.12) to compute the de­
nominator for (2.11), and take the numerator of (2.11) 
from the integer —X solution found first. 

I t can be shown^^ from the expression (2.4) that the 
kernel in (2.8) for / = 0 is of generalized Fredholm type,^^ 
and thus that our 5-wave solutions exist and are unique, 
provided ap{0) < 1. This concludes the formal statement 
of the model as it concerns ^-wave bound states. The 
P-waves, however, require further investigations, and 
are discussed in the next section. 

III. P-WAVE BOUND STATES 

If we investigate the asymptotic behavior in our 
model of the integrands in Eqs. (2.8) and (2.9), it can be 
shown that the kernel of (2.8) fails to be of generalized 
Fredholm type when ReX^ 1.̂ ^ This is a consequence of 
the asymptotic behavior of our one-Regge-pole choice 
for .^x. We must find a method for continuing the solu­
tions in X at least up to X= 1+e (e positive) to get the 
P-wave bound states and slopes since otherwise the 
derivative of the solution N\ with respect to X does not 
exist at X = l , and this derivative is required for the 
slope determination. This may be done by a device 
similar to that used by Mandelstam.^^ Define, for each 
positive integer n, 

f x̂ -) (5) = (S-rnKT'^Nx'^^{S)/Dx^-^(S), (3.1) 

where 

DxW(5) = l - -
(f5'p(5')(5'-4MK2)> 

iMK^ S'-S 

+3/, 

X 

rl /•+! rdPxiz)-\ 
A - dz\ 

L2 7_i L ax X^i 
PaU)i2S/i4:MK'-M,^)-l) 

and iVx̂ ''̂  is the solution of 
XiVx(»>(6"), (3.2) 

+ ( - 1 ) ' + ' / " dZQii-Z) 
J —00 

P^^i^ilS/im^-M-')-!)-] 

1 r'^ 
iVx(»)(5)=5x'"K5)+- / ( i5 'p(5 ' )(5 ' -4Mx2) ' - '" 

IT y 4jl ' iMK' 

X 
rBx«(-S)--Bx'"H5')-I 

, (3.3) 
L S-S' J 

X-
M,'-t 

(2.15) 

21 F. Smithies, Integral Equations (Cambridge University Press, 
New York, 1958). 

22 cf. R. Omnes, Lawrence Radiation Laboratory Report UCRL 
11008, 1963, Phys. Rev. 133, B1543 (1964). 
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where x̂*̂ ""̂  is defined by 

(3.4) 

Now it may be shown by the same method as used by 
Mandelstam^^ that if the dynamical term ^x is obtained 
from double spectral functions constructed in the elastic 
unitarity approximation, then the regions of definition 
in X of successive Tx̂ ""̂  (S) overlap, for /^=0, 1, 2, 3, • • •, 
and they are analytic continuations of each other with 
respect to X. Thus, they define a function Tx(S) which 
coincides with the previous representation for small 
ReX. 

The reader must be referred to the discussion in Ref. 
19 for the proof, since it is rather lengthy. I t is clear 
that in the limit of small coupHng constant, T},^''^ (S) —^ 
B\(S) for any n. Of course, in the model calculation 
here, we do not construct the double spectral functions 
and then project out ^x, but rather take B\ as ap­
proximately given by the expression (2.7). I t is the 
author's viewpoint that such an approach is a good 
starting point and should be modified only by adding 
further contributions which represent the parts of the 
double spectral functions implicitly ignored by using the 
approximation (2.7). 

The equations ioTn = 0 coincide with the equations of 
the previous section, and as before, the correct threshold 
behavior {S—4:MK^)^ for the ampHtude T\{S) is main­
tained for all X in the interval (0, 1 —e) when the n = 0 
representation is used. When we change to a representa­
tion with f̂ ^ 1 it is no longer true that the threshold 
condition is automatically satisfied; this will be dis­
cussed later. 

The formulation of the equations presented here, in 
particular the normaHzation of D to unity at 5 = oo, was 
chosen to follow the approach of Ref. 19 as closely as 
possible. 

We do not consider here the question of the lower 
limit to which we can analytically continue Â x and D\, 
except to note that it is at least ReX=—f, since our 
model satisfies the boundedness condition of Man-
delstam.^^ 

Our amplitudes for X in the neighborhood of 1, which 
will give the P-wave bound states and slopes, are then 
represented by putting n=l in (3.1), (3.2), (3.3)y and 
(3.4). The equations for determining the P-wave bound-
state location are obtained by putting X= 1; we get 

1 r^ 
DiiS) = l— / dS' 

piS')Ni(S') 

S'-S ' 
(3.5) 

where Ni satisfies 

Ni{S)=B 
1 r 

i ( .S )+-
T J AMK' 

dS'p(S') 

B^(S)--B^(S') 
X NiiS') (3.6) 

S-S' 

and Bi is given in our model by 

5i(5)==ri( ' ' )(5). (3.7) 

For the slope equations, we put n= 1 in (3.2)-(3.4), take 
the derivative with respect to X, and set X = 1 at the end. 
The resulting equations are 

1 r dS'p(S') dD^{S)\ 

d\ lx=i TT J AMK^ S—S 

X lniS'-iMj^)Ni(S')-
dNxiS') 

d\ X - 1 -

. (3.8) 

Defining Ei, Fi, and Gi as in the preceding section, we 
find El satisfies 

E x ( 5 ) = G i ( 5 ) + - f dS'p(S[ 

X 
•Bx(5) -£ i (5 ' ) 

S-S 

^ ^ 
£ i ( 5 ' ) , (3.9) 

where Gi is given by 

1 
'p(S')[[n(S'-mK') 

Bi(S)-B^(S') F,(S)-FiiS')~l 

Gi(S)=Fi(S)+- / dS 

X-
S-S' S-S' 

and Fi is, in our model 

i?i(5) = - l n ( 5 - 4 M x ^ ) 5 i ( 5 ) 

[1 /•+1 rdPxiZ) 

N^(S') (3.10) 

X-

(1 /-t-̂  ranz-j 
3 / / - dz\ 

P„(o(25/ (47kfx2- i l f / ) - l ) 

M,^-i L dZQ^i-Z) 

P„(o (25 / (4Mx^-Mp2) - l ) -
X ——\. (3.11) 

The term Bi here, as in the preceding discussion, is 
understood (at the moment) to be partial-wave.pro­
jection of our assumed Regge pole term 

Bi(S)-
1 r+i 
- / dZPi 
2 7-1 

(Z) 

X 3/, 
Fo,a)(2S/(4:M^-M •')-!) 

MJ'-t ]-<-̂  (3.12) 

These equations are then guaranteed to give us, 
within the framework of the model, the correct slope of 



B1386 R I C H A R D C . A R N O L D 

FIG. 1. Basic interaction assumed 
in model. 

the Regge trajectory passing through a P-wave bound 
state, if any exists, by using the formula (2.11). 

However, we now encounter one serious difficulty 
with using only the term (2.4) to generate the dynamical 
singularities; it cannot give the correct threshold be­
havior for Ti{S) when /F^O. In the 5-wave case, we 
could ignore such questions, but if we are looking for 
bound P-wave states (or resonances which are close to 
threshold, like the <p meson), the proper behavior of 
Ni(S) as S—^4:MK'^ is essential. In previous calcula­
tions, this difficulty has been treated by introducing a 
phenomenological pole in Bi{S), far away on the nega­
tive S axis, and its residue adjusted such that Ni(S) 
= 0(S~4:MK'^)^ at threshold. [Writing dispersion rela­
tions for the function Ti{S)l{S+Si)/{S-^MK')^ is 
equivalent to this procedure.] Alternatively, one may 
simply write a dispersion relation for Ti(S) {S—4:MK'^)~\ 
as we did in the previous section, but then one en­
counters the divergence at high 5 values mentioned 
above. This is done by Chew,̂ ^ who compensates by 
cutting off the range of integration at a finite value; but 
that is not consistent with our approach here. 

We cannot introduce a phenomenological pole in ^x, 
however, because the residue would be an undetermined 
function of X; this would ruin the computation of the 
Regge trajectories, in particular the sbpe equations 
which we use. Thus, it is necessary to develop some 
means of correcting the threshold behavior, at least in 
the P-wave bound-state equation, which enables us to 
estimate the effect of the added term on the slope of the 
Regge trajectory and on the S waves, i.e., which in­
volves only known functions of X. 

Now if the complete Mandelstam iterative method^^ 
were used (starting with the diagram of Fig. 1) to 
generate the elastic part of the double spectral func­
tions, we know that the threshold behavior would be 
correct for all partial waves in the final solution T\{S), 
This means that if we are to adjust the threshold be­
havior, the most logical procedure based on the physics 
of our model would be to add a term which represents 
the next-higher mass states as they appear on the 
dynamical cuts of T\{S). These could come from the 
left-hand cuts of the crossed and uncrossed fourth-order 
diagrams, shown in Fig. 2. 

To accomplish just this it would be necessary to 

compute the amplitudes represented by Fig. 2, where 
the exchanged "particles" were treated as pairs of 
Regge poles in the four-particle exchange contribution. 
To avoid such a complicated function, we will simplify 
the situation slightly by replacing the exchanged 
''particles" by scalar mesons (S) which have the same 
mass as the p (vector) meson pole exhibits, Mp. Then the 
contributions of Fig. 2 are easily computed.^^ The 
coupling constants are left arbitrary, and the left-hand 
cuts fr^m these diagrams are added to the left-hand cut 
from fx^^H^). The resulting function for Bx{S) is used 
in the equations which have already been written down; 
then for X= 1, the couphng constant for the scalar meson 
S introduced above is adjusted so as to yield the correct 
threshold behavior for Ni(S). Explicitly, if g is the 
scalar-meson coupling constant and Ms its mass, the 
additional term for Bj(S) is given (up to a constant) for 
integer / by 

r P^Cl-2</(y+4ikfzf2)] 
X / dy—— —— 

y.Uu{y,t)+fc{ym, (3.13) 

where /«, /„ are from the uncrossed and crossed dia­
grams, respectively, and are given by 

^ ^ 1 coth-i[(<-41f2g)i/V(A„/3;)i/2] 
/«()','!) = (3.14a) 

y i^u/yyi' 
and 

1 C0th-l[(i!-4Jf2g)l/2/(^^/2)I/2] 
fo{y,t)= — — , (3.14b) 

Z (A./Z)i/2 

where we have written 

Z=^MI^+y-t, ^u=^yt+iMKH+^Ms', 

and 

^c=f-yt+^Ms''. 

It is assumed that the exact form of B/*^(S) does not 

\ 

/ 

\ / / 

\ 

K K K 

(a) (b) 

FIG. 2. Higher mass contributions to dynamical singularities. 

23 S. Mandelstam, Phys. Rev. 112, 1344 (1958); G. F. Chew and 
S. C. Frautschi, ibid. 123, 1478 (1962). 

24 See for example Ref. 1 where the required Feynman integrals 
are reduced to elementary functions. 
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critically affect our final results. The general properties 
we need to know are as follows: (a) B/^^ (S) is nonzero 
and slowly varying for (S~4:MK^) small, (b) B/^'^(S) 
~ 0(S~^) for large enough 5, in particular for 5 > IOOMK^. 
(c) B/^^ (S) is an oscillating function of / ; in particular, 
it is positive for / = 0 , negative for / = 1. 

Property (a) is necessary, that we might use B/^^ for 
the intended purpose of adjusting the value of Ni (S) at 
threshold. Property (b) insures that the high-energy 
asymptotic behavior is governed by the Regge-pole ex­
change term, our fundamental input. Property (c) 
enables us to draw conclusions regarding the effect of 
B/^^ on the Regge slopes and on the 5-wave bound-
state energies, without actually using B/^^ in any of the 
integral equations except the one which determines the 
P-wave bound state; in particular only (3.12) has the 
additional term now Bi^^^(S). Numerical results, en-
abHng us to see that effects in the other cases will be 
small, are discussed later. 

IV. RELATIONSHIP OF MODEL TO 
STRIP APPROXIMATION 

Chew, Frautschi, and Mandelstam^^ originally pro­
posed a model for general two-body reactions; it was 
based on the iterative process for determining the elastic 
part of the double spectral functions in the Mandelstam 
representations, and the observation that over much of 
the energy range the nearest part (strip) of the spectral 
functions determined the main features of the ampli­
tude, in particular for high energies and low-momentum 
transfers. No calculations based on this model in its 
complete form have been done, because of the severe 
numerical problems involved in handling the spectral 
functions for large values of their arguments, even after 
the question of subtractions was clarified^^ by intro­
ducing Regge poles into the representation of the 
amplitude. 

It was later proposed by Chew,̂ ^ and Chew and 
Jones,^^ that a good approximation to the strip ap­
proximation could be obtained by keeping only Regge 
poles in the crossed channels, ignoring the iterative 
construction of the spectral functions, and solving N/D 
equations for complex I to redetermine the Regge poles 
in a self-consistent manner. A portion of this problem 
in the TTTT case was treated by Balazs^^ who obtained 
interesting numerical results, although he did not utilize 
Regge poles explicitly in the crossed channels. 

This approximate version of the strip approxunation 
is very close to the present model. There are essentially 
two points of departure. The first is that the equations 
written by Chew^̂  were cut off at some upper limit, this 
limit being treated as a free parameter in the computa­
tion of any given set of amplitudes; this insured that the 
high-energy limit of the amplitudes Ti would coincide 

25 G. F. Chew and E. Jones, Lawrence Radiation Laboratory 
Report UCRL 10992 (to be published). 

26 L. A. P. Balazs, Phys. Rev. Letters 10, 170 (1963); Phys. 
Rev. 132, 867 (1963). 

with the Born terms ^z, no matter what the latter were. 
In our model, we fmd that as a consequence of the fact 
that only Regge poles associated with vector mesons are 
introduced, the Ni functions always approach the Bi 
functions for sufficiently large 5 ; and we find that the Di 
functions approach + 1 for large positive S, (They are 
defined to do so only for large negative S.) Thus, the 
amplitudes in this model approach the Born terms, 
without the necessity of a cutoff. 

The second point is our treatment of the P-waves 
threshold behavior, as discussed in the previous section. 
We have not written down a prescription for correcting 
the threshold behavior at higher / values, but it is clear 
that the procedure is capable of generalization to larger 
/ by including higher order diagrams. This is closer to 
the original version of the strip approximation^^ than the 
procedure suggested by Chew.̂ ^ Although it is possible 
to formulate partial wave N/D equations which give the 
correct threshold behavior for =̂=0 and /= 1, contain no 
divergence at large 5, and contain no arbitrary parame­
ters, following the approach of Chew,̂ ^ it is not possible 
to generalize them to /> 1 without introducing either a 
cutoff or new parameters. This is the reason the method 
outlined above is preferred by the author; the correction 
terms introduced in the above method may be directly 
correlated with properties of the double spectral func­
tions for high mass contributions. For instance, a 
prescription for correcting the D-wsive threshold may be 
constructed, by adding a sixth-order diagram and 
adjusting its amplitude, or adjusting another parameter 
in the fourth-order term used; and in each case we get a 
definite function of X which can be used to compute the 
Regge trajectories. 

One defect of the model is the omission of the Regge 
pole for Pomeranchukon (P) exchange, which is ap­
parently important at least in high-energy nucleon-
nucleon scattering.^^ Here, we simply assume that the 
bound-state properties are determined principally by 
the vector meson exchange, which means that the F-
exchange effect is assumed to be small compared to the p 
exchange term for small t and not too large S. 

If it is true that the contributions from higher order 
diagrams always have weaker asymptotic behavior than 
the vector meson Regge pole term, we have some hope 
that higher order diagrams do not disturb the bound-
state characteristics which we compute from the one-
pole diagram. This would be most Hkely to be true if the 
Regge trajectory of the exchanged meson has a small 
slope, so that 1—a(0) is small. In the latter case, for a 
given coupling constant, the high-energy asymptotic 
behavior of N pn Eq. (2.9)3 is the principal factor 
which determines the existence of a bound state, al­
though the precise position and residue depend on the 

27 For latest status of this concept, cf. A. Ahmadzadeh and I. A. 
Sakmar, Phys. Rev. Letters 11, 439 (1963); K. J. Foley, S. J. 
Lindenbaum, W. A. Love, S. Dzaki, J. J. Russell, and L. C. Yuan, 
ibid, 11, 425 (1963); Riazuddin and Fayyazuddin, Phys. Rev. 132, 
873 (1963). 
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FIG. 3. Sketch of 
assumed cLp{t) for 
«'(Mp2)=0.25Mx-2. 

low-energy behavior of N. Since we can in turn compute 
the slope of a Regge trajectory associated with a bound 
state, and hence compute a(0) approximately if the 
slope is small, this is a favorable situation when applied 
to ^^bootstrap'' calculations. 

V. NUMERICAL RESULTS FOR THE KK MODEL 

In the simple version of the model given here, we have 
two free ' ' input" parameters, the pKK coupling con­
stant and the Regge slope a' of the p meson trajectory. 
We assume that the detailed shape of the functionap{t) 
is not important, and we use a two-pole representation 

ap{t)=a{-^)-
Ri R2 

— + — , 
/ i— t ti—t 

(5.1) 

This form was suggested by the dispersion relation 
for̂ ^ a and can represent quite accurately (for /<0 ) 
trajectories known from the Schrodinger equation with 
a Yukawa potential.^^ We fix h and 2̂ at ^MK^ and %MK^, 
The final results are quite insensitive to these values, as 
long as both h and h are greater than Mp^ and not too 
close together. The asymptotic value a{—^) was 
chosen to be — | , in order to simulate the asymptotic 
behavior of the background integral of the Regge 
representation. The residues Ri were then fixed by the 
conditions a^ (Mp^) = 1 and a/ (Mp^) = a ' , where a' is the 
free parameter. A typical trajectory a(t) is sketched in 
Fig. 3, for a' = 0.25MK~^. This value of a' corresponds 
approximately to the slope of trajectories originally 
suggested by Chew and Frautschi.^^ We investigate the 
solutions obtained for a ' values between 0.12 and 0.50, 
where we take the K mass to be unity from now on. 

The coupling constant parametrization in the nu­
merical solutions is defined in terms of 

7 ^ 3 / / / M , (5.2) 

For 7<<Cl, we get no bound states; for 7 near unity, 
there is one 5-wave bound state; then as 7 reaches a 

28 J. R. Taylor, Phys. Rev. 127, 2257 (1962); H. Cheng, ibid. 
130, 1283 (1963); A. Pignotti, Phys. Rev. Letters 10, 416 (1963). 

29 A. Ahmadzadeh, P. G. Burke, and C. Tate, Phys. Rev. 131, 
1315 (1963); C. Lovelace and D. Masson, Nuovo Cimento 26, 472 
(1962). 

30 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 1, 394 
(1961); 8,41 (1962). 

value between 5 and 10, there appears a P-wave reso­
nance while the 5-wave bound state moves lower in 
total energy. Values of 7 greater than 15 were not in­
vestigated. The bound-state spectrum for specific values 
of 7 and a' is exhibited in Fig. 4. The portion of the 
curves for SB<0 are intended to have only formal 
meaning. 

We can relate 7 to the vector coupling constant 
defined for an elementary vector meson. The amplitude 
from perturbation theory for the r = 0 state of KK, with 
the exchange of isovector p meson, would be 

i^p(^>(5,0 = 
3 fpKK^ S—S 

4 167r Mp'-t' 
(5.3) 

where S=4MK^-S-L Evaluating Bp from (2.2) for 
a=l and large Sj and comparing with (5.3) for large S, 
we get 

/ . 

ATT 

4 / 41f/ \ 
(5.4) 

Substituting the numerical value for the mass Mp 
= 1.581fK, this relation becomes 

f,KKV^ir^2Qy. (5.5) 

Details of the methods used in numerical solution of 
our equations, using an electronic computer (IBM 
7090), are discussed in the Appendix. 

The computed Regge trajectory slopes behave as ex­
pected from potential theory; considering first the 
6'-wave bound state, we find that for small binding 
energy the slope is very large and positive, and as the 
binding energy increases, the slope decreases. In the 
P-wave case, as the resonance first appears we find zero 
slope; then it becomes nonzero and positive. As the 
resonance moves down in energy after it becomes a 
bound state, the slope decreases again, but remains 
positive. These features can be recognized as following 
closely the behavior of {-•dDi{S)/dS) at the bound 

m 
(f) 

FIG. 4. Bound state and resonance energies, for various ap 
values, as a function of 7. 5 and P refer to /==0 and / = 1, respec­
tively. Values of a J indicated on graph. 
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state; the denominator of the expression (2.11) is found 
to be a slowly varying function of bound-state energy 
for both S and F waves, and remains positive for all 
cases examined, with a value for S waves always close 
to unity. Some numerical values for the computed 
slopes are given in Fig. 5, where a factor (4ilf ij;̂ —5^)^^^ 
is introduced in the 5'-wave cases to get a nonsingular 
plot. The approximate trajectories, deduced from the 
/ = 0 and 1=1 crossing points and slopes, are sketched in 
Fig. 6. The residues of the poles in Ti{S) associated with 
the bound states were computed, and are given in 
Fig. 7. These residues are proportional to the square of 
the coupHng constant of the bound state with KK 
system, the proportionality depending on the definition. 
We have tabulated the residues defined by 

/S~SB\ 
2= lim ) \T.iS) 

NO(SB) d n-i 
— ReZ)o(^) (5.6) 
dS -^S=SB 

for the 5-wave bound states, and for the P waves (bound 
state or resonance) 

G^'=-
NI(SB) ) r d n-i 

Rez),(5) . (5.7) 
KVL d^ JS=SB (SB-^MK') 

This definition is similar to (5.6) for SB<^MK'^, and is 
continued for SB>^MK^ as suggested by Gell-Mann and 
Zachariasen.^^ 

The residue Gi^ determines the width of the cp meson 
as computed in our model. Explicitly, for SB='M^^, 
when RePi(55) = 0, the full width (in energy units of 
the K mass) is 

VjMK=^Gi^{M^''~^MK^yimK/M^\ (5.8) 

Typically, we find Gi^^2.5 in our model when 

FIG. 5. Computed slope as a function of bound state energy, for 
various a J values (indicated on graph). Curve labeled LM is from 
Ref. 29, Lovelace and Masson. Note different scales for Z = 0 and 
= 1 cases. 

FIG. 6. Sketch of Regge trajectories for various values of 7, with 
ap' = 0.25, based on crossing points and slopes. 

\/SB= 1018 MeV, for the best choices of 7 and a\ This 
leads to r ^ ^ l 2 MeV, a factor of 2 to 3 greater than the 
experimental data indicates. I t should be remembered, 
however, that we have omitted the co pole in the r = 0 
direct P-wave channel, and this may have an additional 
effect on the (p width. Furthermore, it is generally ex­
pected that a one-channel calculation usually yields 
resonance widths that are too wide, _and the inclusion 
of higher mass channels (such as NN states) tends to 
narrow the width; see, for example, Capps.^ Thus, these 
results are encouraging, since we expect that further 
sophistication of the model will move the width closer to 
the experimental value. 

I t appears that an 5-wave bound state a of KK should 
exist in reaHty, if our model is at all significant. The 
energy of this bound state is quite sensitive to the as­
sumed value of a ' even if we determine parameter pairs 
(7,0:') resulting in the P-wave resonance at the experi­
mental position. For most a ' values investigated, the 
5*-wave zero occurs at an unphysical energy SB<0; this 
probably would not happen if the bootstrap effect of a 
exchange were included. 

In reaHty, however, such a state would be strongly 
coupled to pions, and the decay or production of a would 
exhibit a characteristic width of 200-300 MeV due to 
the 5-wave decay cr-->2ir; here we assume the pion 
coupling comparable to the KK coupling for a, and 
M^^IMTT' Thus it would probably not be seen in 
effective mass plots. I t is encouraging to note, however, 
that such a state fits well into the semiphenomenological 
analyses of nucleon-nucleon scattering,^^'^^ which em­
ploy pion resonances (or heavy mesons) as a source of 
the nucleon-nucleon potential. There might be a possi­
bility of finding traces of a- as a contribution in inter­
mediate states in reactions such as K~+P~^ F*+7r, 
since such a particle would give unusual singularities in 
a box diagram. ̂ ^ 

31 R. A. Bryan, C. Dismukes, and N. Ramsay, Nucl. Phys. 45, 
353 (1963); Riazuddin and Fayyazuddin, in Ref. 27. 

321 am indebted to Professor Christian Fronsdal for discussions 
on this point. 

file:///T.iS
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FIG. 7. Bound state residues Go^ and d^ as defined in (5.6) and 
(5.7), for various a/ values as indicated. The curves with positive 
slope are P-wave bound states and resonances, the others are 
^-wave bound states. 

To return for a moment to the general properties of 
our solutions, one finds that when the contribution from 
jgi(4) (S) needed to establish correct threshold behavior 
in P-wave amplitudes has been fixed, it is found that 
adding the corresponding ^o^^^ (S) (i.e., with the same g^ 
value) to Bo^P^iS) changes the 5-wave binding energies 
only a slight amount, of the order of 10% downwards in 
SB. I t is further found that {dB^^^iS)/dX) evaluated at 
X=0 and X = l is negligible compared to the p Regge-
pole contribution; this is because B/^^ is an oscillating 
function of / . Thus, the Regge slope calculations would 
be perturbed only slightly if we were to add the fourth-
order terms in the slope equations. The corrections to Fi 
have not been computed explicitly. I t is necessary, 
however, to keep the complete expression [^i^^^+^i^^^] 
for the first term in (3.11), and everywhere in (3.9) and 
(3.10) where Bi occurs, instead of (3.12). 

We conclude this section by noting that Regge tra­
jectory computations for bound states in the Schrodinger 
equation have been done with Yukawa potentials,^^ and 
we can compare our results for the Regge slopes of bound 
states with those calculations. Slopes were estimated 
from the graph given by Lovelace and Masson,^^ and 
those were plotted for comparison in Fig. 5. I t is ap­
parent that there is agreement to about 10% in the 
reduced slope values [slope multiplied by (4M"i^2—5^)^/^] 
in the nonrelativistic region close to threshold, if we 
choose a' such that a(0) = 0, corresponding roughly to 
scalar meson exchange. 

VI. DISCUSSION OF RESULTS; CONCLUSIONS 

I t can be seen from the numerical solutions that a few 
features of more crude approximations (e.g., the first-
order determinental method^ •̂ ) are retained, and can be 
said to be "justified" in the framework of our model. 
The problem of a KK P-wave resonance has been treated 
using the older methods by Barbour and Nishimura,^ so 

we have a reference point available for some of the 
numerical results of the present calculation. 

The first point of favorable comparison is the de­
termination of the width of the P-wave resonance. Our 
12-MeV result (taking the smallest value obtained) for 
the one-channel approach coincides numerically with 
that of Ref. 6. This can be foreseen formally if the as­
sumed Regge slope a' of the p is small enough; for in this 
case, a small value of coupling constant is required to 
give a P-wave resonance just above threshold, and the 
Ni function is close to P i . I t should be noticed that the 
computed resonance width is a ratio of the derivative of 
D to the value of N at the resonance position, and in the 
approximation A^=P the coupling constant cancels out. 
Thus, in the first-order determinental method the reso­
nance width is determined by kinematical factors such 
as the mass of the exchanged meson. 

The second favorable comparison is in the adjustment 
necessary to achieve the proper P-wave threshold con­
dition whenever Ni differs appreciably from Pi . Our 
model adds a term Pî ^^ to the one-meson pole term, 
while as discussed earlier, other approaches are equiva­
lent to adding a semiphenomenological far-away pole to 
the one-meson term. I t is interesting to note, however, 
that our Pî ^^ can be approximated rather well by a pole 
at S=—4:0MK^. Thus, the simpler approach gives 
essentially the same results, if one is only interested in 
the position and width of a P-wave resonance and does 
not try to compute Regge trajectory properties as­
sociated with such resonances. 

On the other hand, since the bound state and reso­
nance positions in our model are critically dependent 
upon the slope values a\ there is no justification of most 
of the various subtraction and cutoff procedures which 
have been used to get answers from vector-meson ex­
change terms. One cutoff procedure has been used by 
Scotti and Wong^^ which takes into account the exist­
ence of asymptotic behavior depending on a ' ; cutoff in 
their model as well as ours comes about with factors of 
5a(o)-i^ The form of the cutoff should not affect the low-
energy scattering phase shifts, but it is certainly im­
portant in establishing the bound-state energies in our 
model. I t should be noted that the Scotti and Wong 
form reduces to the perturbation theory expression at 
threshold, but this is not true in our model. There will 
be, then, at least a difference in the values required for 
coupling constants in a comparison of the bound-state 
properties between the two approaches. 

The introduction of h and 2̂ as extra parameters in 
the trajectory may be avoided entirely by computing 
as^^ and as^^^ as well as as', through taking successive 
derivatives of (2.8) and (2.9), then solving the resulting 
integral equations, as done here for a^'. If one wishes to 
go to this trouble, however, it would probably be simpler 
from the computation standpoint to solve (2.8) and 
(2.9) directly for a few noninteger values of X selected 
to give a good representation of the trajectory a5(/) . 
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I t is dear that the calculation done in the present 
work does not give any experimentally useful results, 
because (1) we cannot match the observed <̂  width by 
adjusting parameters, and (2) even if we get the cp mass 
correctly, the predicted a meson mass is critically de­
pendent on d and is unphysical for a large range of a'. 
As mentioned previously, the latter problem might be 
cured by including the bootstrap effect of a exchange, 
and the former by a multichannel calculation including 
'N'N states. Neither of these is certain, however, and 
such improved calculations should be done to check that 
improvements result. The numerical work presented was 
carried out not with any a priori belief in success in the 
physical system treated, but to illustrate that there are 
no hidden difficulties in applying the formalism, and get 
a start in seeing what Regge trajectories of such a model 
might look like. I t is now hopeful that a straightforward 
application to the IS^'N system will be interesting; one 
suspects that the TT, ??, p, and co mesons will all have 
trajectories similar to those computed for S waves here, 
since they all may be treated as Z=0 states in the B'N 
system; and all of these would be__put in as exchange 
terms analogous to (2.1) in the i^X case. 

I t should be pointed out again that most of the 
physical ideas contained in the present work are not 
j^g^33;i5. ^hg emphasis on equations determining a', and 
the numerical solutions, are contributed here. 
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APPENDIX: DISCUSSION OF NUMERICAL SOLUTIONS 
FOR THE EQUATIONS 

Here is an outline of the computation sequence used 
in the computer program for solving the ^-wave equa­
tions. In each computation of a function, it is under­
stood that 100 values of S were computed and stored. 

(1) B^{S) is computed; Eqs. (2.7), (2.4). 
(2) The integral equation (2.8), regarded as a matrix 

equation connecting 100 values of A'o on each side, is 
inverted and the resolvent matrix stored. 

(3) Z^o(5), for 200 values of S (100 above and 100 
below threshold) is computed by integrating [Eq. (2.9)] 
the solution A ô. 

(4) Fo(5) is computed [Eq. (2.15)]; then using Fo 
and A'o, G^ is computed [Eq. (2.14)]. 

(5) Equation (2.16) is solved, yielding 100 values of 
Eo{S), by using the resolvent matrix obtained in 
step (2). 

33 Additional examples are: T. W. B. Kibble, Phys. Rev. 131, 
2282 (1963); Y. Miyamoto, Progr. Theoret. Phys. (Kyoto) 28, 967 
(1962); L. A. P. Balazs, Phys. Rev. 132, 867 (1963). 

(6) The derivative (2.12) is computed for 200 S 
values, from the solutions Â o and EQ obtained in steps 
1-6. 

(7) The zeros of DQ(S) are located, giving SB, and at 
those positions the slope is evaluated through (2.11). 

(8) Residues are computed, using Eq. (2.8) to com­
pute values of Â" below threshold when required. 

The 100-mesh point values of S were selected after 
much experimentation to give as good as possible a 
representation of the functions both near threshold, 
where rapid variations occur, and for large S values 
where it is important to retain the correct asymptotic 
behavior. Values out to IO^MK^ were used. The integrals 
in (2.8), (2.9), (2.12), (2.13), and (2.14) were defined by 
Simpson's rule, as was the last term in (2.15) which also 
required 100 points. I t is estimated that the over-all 
accuracy in most of the integrations is of order 10%, the 
error due largely to the high-^* asymptotic region. 

One of the advantages of the formulation given 
is that only one nonelementary function is required, 
(6Px/5X)x=z, in addition to the basic Born term in­
volving the Pa. Both the Pa occurring in (2.4) and the 
derivative (dPx/dX)\^i were evaluated using a 16-point 
Gaussian quadrature applied to the integral repre­
sentation 

1 ("' 

T Jo 
# [ Z - f (Z2-1)1/2 COS0]«. 

I t was found, however, that in (2.4) the argument is 
always much larger than unity, and the asymptotic 
form Z'^ could be used in (2.4) with an error of less than 
10%. This was consistently done to speed up computing 
time. 

I t was also found that the second term in (2.4), as 
expressed in the third term in (2.15), and corresponding 
equations, contributed less than 5 % to Fo(S) and Fi(S), 
This term was omitted for most of the calculations after 
the magnitude of this error was ascertained, again to 
speed up the computing process. 

The fourth-order function B^^^ required in the P-wave 
case was evaluated for 5 < WMK^ directly from (3.13), 
using 100-mesh points and Simpson's rule in each 
integral. For S> IO^MK^ the asymptotic behavior 5"^ 
was found to hold and extrapolation was used from that 
point on. 

The partial-wave projection integrals, and the first Z 
integration in (2.15), were done by 16-point Gaussian 
quadrature in Z for S<200MK'^ and by 100-point 
Simpson's rule in / for S>200MK^. The representation 
was split up because the 16-point quadrature in Z did 
not give the correct asymptotic behavior, whereas the 
Simpson's rule method was not accurate enough for 
small values of 5 . 

A complete set of ^-wave solutions for each a^ and 7, 
by steps 1-8 above, required 10 min of computing time 
on the 7090. The largest single tasks were step (2), 
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where inverting the 100X100 matrix used 2.5 min, and 
step (4) where computing FQ required 5 min, when the 
approximations mentioned above were used. Without 
these approximations, the total computing time was 
increased by a factor of three. 

The P-wave solutions used an average of 7 cycles 
through steps 1-2. After each cycle the threshold value 
of A î was examined, and a search program employed to 
vary ĝ  [in (3.13)] until NI(4:MK'^) = 0 was achieved 

FIG. 9. ReDi(S) and Re(aZ)x(5)/aX)x=z for / = 0 and / = 1, parame­
ter values corresponding to Fig. 8. 

with an accuracy dzO.05; then steps 3-S were executed 
as above. Total running time for a P-wave amplitude 
was about 30 min. 

The time required for computing 100 values of .Bî *̂  
was 20 min. This function was not recomputed each 
time since it does not depend on a' and 7 ; values were 
stored on cards. 

Some of the functions obtained in a typical set of 
solutions are given by Figs. 8 and 9. In Fig. 8 is plotted 
Bo and NQ for Q:' = 0 . 2 5 , 7 = 2.5, and Bi and A'l for 
o,' = 0.25, 7 = 5.0; in Fig. 9 we give ReJ9o, ReZ)i, 
Re(aZ)x/^X)x=o, and Re{dD^/d\)x=.i for the corre­
sponding values of a' and 7. Here by Bi we mean only 
the p pole term, whereas the A î solution given is that 
which is obtained after adding the proper Bi^^'^ con­
tribution to Bi as shown. 

Finally, an approximation for ^i^^^ was used which 
speeded up computing time for the P waves. After 
solutions were obtained using the function described in 
the text, it was found that Bi^^^ could be approximated 
within 10% by a pole placed at 5 = —4:0MK^, and the 
solutions were essentially unchanged. This allowed re­
placing the trial-and-error computer program by an 
algebraic method for determining the appropriate resi­
due, by writing a dispersion relation for Ti(S)£(S+Si)/ 
(S-4:MK^)J as described in Sec. I l l , where SI=^OMK\ 
This reduced the P-wave computation time to that of 
the S waves. 


